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A very simple perturbative numerical (PN) algorithm is developed for the solution 
of the radial Schrodinger equation, using tit-at order perturbation theory along the 
lines previously developed by Gordon. This algorithm uses the same basic approximation 
(a step function approximation for the potential well) as that recently reported by 
Riehl, Diestler, and Wagner (10). It shows, however, an @(h6) rate of convergence in the 
step size h, as compared to the 0(V) rate of convergence of the algorithm given in the 
above cited reference. In the present paper we report a new feature of the PN approach 
to the solution of the Schrodinger equation, namely, the remarkable stability of the 
present PN algorithm against the round off errors. A comparison with the Numerov 
method for eigenvalue problems proves the high efficiency of the present algorithm. 

I. INTRODUCTION 

When applied to simple quantum systems (e.g., molecules, nuclei), the adiabatic 
(Born-Oppenheimer) approximation reduces the problem of solving the 
SchrBdinger equation to that of solving the one-dimensional second-order linear 
equation 

L(r) y(r) = V2/dr2 - fk>l h-1 = 0, 0) 
O,(r<+co, (2) 
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where 
f(r) = 44 - e, 

u(r) = &-4fi%JT~) + &f + WI, e = (2p/fi2) E, 

(3) 

with the usual meaning of the parameters. 
In the present paper we shall confine our attention to the bound states, which 

are defined as those solutions of (1) which satisfy the following boundary condi- 
tions: 

Y(O) = 0, (4) 

hi y(r) = 0. (5) 

The problem (l)-(5) is a singular Sturm-Liouville problem; closed form solutions 
for eigenvalues and eigenfunctions are available only for a few classes of poten- 
tials [l, 21. It is therefore necessary in general, to look for approximate solutions. 
Numerical methods for solving (1) can be divided along three different lines: (a) 
approximate the differential operator d2/dr2 by a difference operator and reduce (1) 
to a set of algebraic equations [3]; (b) approximate the unknown solution y(r), as 
well as its first order derivative y’(r), by Taylor series [4], or, more generally, 
develop them in series using a basis of spline functions [5], and evaluate the coeffi- 
cients of these series by recurrence; (c) approximate the coefficientf(r), (in fact, the 
reduced potential u(r)), by an expression f(r), (U(r)), for which the differential 
equation can be solved exactly. 

The third approach was ignored until the late sixties, when it was finally recog- 
nized [6-S] to lead to very efficient algorithms for the solution of (1). Since then, 
important progress was made on this way [9-131, and several problems of quantum 
mechanics and of mathematical physics were solved [14-171. 

Gordon [6] was the first to go a step further, namely, to exploit perturbation 
theory in order to improve the solution furnished by the alternative (c). However, 
he insisted upon the piecewise analytic character of the solution, rather than on 
its perturbative character. This aspect was emphasized only quite recently [9, lo]. 
Thus, the papers [6-l 31 propose each a perturbative numerical method (PNM, PN 
method). In fact, two classes of PN methods were investigated. In order to dis- 
tinguish between them, we shall observe that the perturbative series giving y(r) and 
y’(r) are uniquely determined by the choice of the approximating function j(r) 
(U(r)). Therefore, a PNM is fully characterized by this choice. Thus, the PN methods 
reported in references [7-lo] are step ,function PN methods (SF-PNM, SF-PN 
methods), while that reported in references [6, 111 is a piecewise continuous lirzear 
function PN method (PCLF-PNM). 

Comparisons have been reported until now, for scattering problems, between an 
SF-PNM and the well-known Numerov method [ lo], and between the PCLF-PNM 



A PERTURBATIVE NUMERICAL METHOD 3 

of Gordon and the same Numerov method [18]. The authors of these studies con- 
clude that, in general, the Numerov method would be preferable to the PN methods. 

In the present paper, our aim is twofold. First, we derive an improved SF-PN 
algorithm of a remarkable simplicity, which shows, using first-order perturbation 
theory, an O(h5) rate of convergence in the step size h, one order better than that of 
the SF-PN method of [lo]. Second, we compare our algorithm with that produced 
by the Numerov method for the eigenvalue problem, and prove the existence of a 
new feature of the perturbative approach, ignored until now. Namely, our investiga- 
tions in the region of the very small step sizes show a remarkable stability of the 
computed eigenvalues against the round off errors, in contrast with the instability 
exhibited by the Numerov method. 

The paper is organized as follows. In Section II, we reformulate the numerical 
problem (l)-(5) so as to deal everywhere with finite quantities only. The principle 
of implementation of our SF-PNM is discussed in Section III. Then, in Section IV, 
the first-order perturbative corrections are evaluated and the practical algorithm 
(33) is written down. The error analysis performed in Section V proves that the 
rate of convergence of this algorithm is O(h5) in the step size h, the maximum 
possible rate of convergence for this case [13]. Section VI is devoted to practical 
considerations and to the discussion of the numerical results produced by the 
present SF-PN method and the Numerov method. 

II. IMPLEMENTATIONOF SINGULAR STURM-LIOUVILLE PROBLEMS ON COMPUTER 

In order to be able to implement an algorithm of the problem (l)-(5), we have 
to reduce the infinite domain (2) to ajinite one, 

b-0 7 r,l, (2’) 

over which the real or complex valued reduced potential function U(I) has bounded 
variation. 

First, at r = 0, difficulties arise when a singularity occurs in u(r) (e.g., because 
of the presence of Coulomb and/or centrifugal terms). The standard way for 
removing them [20], is based on the existence of a convergent power series for y(r) 
in a neighborhood [0, r,] of the origin, so that u(rO) does not overflow the allowable 
range of the computer. Then, the beginning of the domain (2) is moved from r = 0 
at r = r, , while the boundary condition (4) is replaced by 

dro> = y. 9 (4’) 

with y. known from the power series expansion. 
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Second, the infinite right-hand side of the domain (2) has to be replaced by a 
finite quantity rp? . This problem can be solved in two distinct ways. Canosa [8, 161 
and Hajj el al. [22] cut the domain (2) at a point r,’ where, in view of (5), the solu- 
tion J@~‘) becomes “negligible.” Tarp [20] and Ixary [21] use the available informa- 
tion about the exponential decrease of the solution y(r) in the asymptotic region, 
which seems to provide a value r, sensibly smaller than r,’ (see, e.g., the numerical 
example investigated in [21]). An important point is, however, obscure in [20,21], 
namely, the numerical definition of the asymptotic region. We get an unambiguous 
definition of it in the following way. For every e # 0, we write!(r), Eq. (3) in the 
equivalent form, 

f(r) = -41 - 4r)/el, 

and observe that as the reduced potential satisfies the boundary condition, 

lim u(r) = 0, r-a+ m 

the ratio ) u(r)/e 1 can be made smaller than any given quantity q > 0, provided r is 
large enough. Due to this fact, on a computer with a t digit binary mantissa, the 
difference 1 - u(r)/e equals unity as long as r reaches a value r, for which 

I u(r>I < z-t I e I . (6) 

As a consequence, for every r > r, , the computedf(r) equals -e, and the com- 
puted solution shows asymptotic behaviour. Therefore, Eq. (6) provides us with a 
necessary and sufficient condition for the choice of the finite upper limit r, of (2’). 
Of course, if we wish results with a relative accuracy q > 2-$, the condition (6) can 
be relaxed to 

14-n>l (714, 7 > 2-t. (6’) 

At r = r, , y(m) and y’(m) behave as decreasing exponentials, and this provides 
us with the boundary condition which replaces (5) 

F(r, , 4 = y’(r,J + Mr,) - ePz y(m) = 0. (5’) 

In this way, the original problem (l)-(5) has been put in a form which is suitable 
for the computer. For the sake of simplicity, we shall use a shooting method 
[23, 241, and we shall replace the Sturm-Liouville problem by the following 
Cauchy problem : 

N-1 y(r) = 0, r E PO , r,l, (7) 

Y(rd = 0, y’(rJ = yo’, (8) 
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where the derivative y’(r,,) is chosen at will; it can be fixed at the end by the condi- 
tion of normalization of the eigensolutions of (1). The energy values for which (5’) 
is satisfied will provide us with the eigenvalues of the Sturm-Liouville problem. 

III. THE STEP FUNCTION PERTURBATIVE NUMERICAL METHOD 

The domain [r,, , r,] is divided in n arbitrary intervals, 

by the mesh points 
[ri-l , ril i = 1, 2 ,..., n, 

rl , r2 ,..., r,-, . 

The solution of the Cauchy problem at the end of the first interval provides us 
with initial conditions for the second interval, and so on. Therefore, a Cauchy 
problem is solved within each interval 

[ri-l , ril i = 1, 2 ,..., n. 

As the label i of the interval is immaterial, we shall consider a single interval, of 
length h, called thereafter [a, b]. On this interval, the reduced variable 

6=r-a, 6 E LO, hl, (9) 

is introduced, and the Cauchy problem reads 

w + 6) Y@ + 6) = 0, (10) 
VW = Ya 3 Y’W = Y,‘. (11) 

In the frame of the perturbative approach, the operator L(a + 6) is divided into 
two parts, 

L(a + 6) = Lo@ + 6) - J%a + @, (12) 
L,(a + 6) = d2/dS2 - U + e = d2/dS2 -f = d21dS2 - w2, Wa) 

L,(a + 8) = u(a + 6) - li = w(6), WI 

so that (10) becomes 

L&J + 6) Y@ + 6) = L,(a + 6) J@ + 6). (14) 

A. Summary of the Zeroth-Order Approximation 

If the right-hand side of Eq. (14) is neglected, the zeroth-order approximation 
of SF-PNM is obtained. This approximation was fully investigated in [9] and the 
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results which are of interest for the implementation of perturbative corrections are 
listed below. 

Among the various analytic representations of the solution of the zeroth order, 
denoted y(O)(a + a), the following was proved to be the most suitable for computa- 
tions: 

where 
US> = kxPW9 + ev--oW, (164 
fz(S) = [exp(wS) - exp( -wS)]/(ZwS). (16b) 

From (Isa), the first-order derivative is obtained, 

Y(O)‘@ + 3 = w2%%9 Y, + 5,(S) Y,‘. WI 

The optimal constant U, i.e., that e for which the errors associated to y(O)(b) and 
y(O)‘(b) are minimized, is given by [9], 

fizz f 
n=O (m i l)! hmu’“‘(a)’ u’“‘(a) = d”u(a)/dS”, 

or, equivalently, 

u = (l/h) J” u(a + 6) dS. 
” 

(174 

(17b) 

The zeroth order approximation results in a second-order method [7-9, 191. 

B. Perturbative Corrections 

Having the solution of the zeroth-order approximation, the original equation 
(14) can be solved formally by the method of the variation of the constants 
[25], which yields the same result as that obtained by Gordon [6] via a Wronskian 
method, namely, 

Here, the quantities p1 and pz can be found as perturbative series [6], 

ps@ + 6) = f  Pi% + a s= 1,2, 
k=O 
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where the coefficients pi’), s = 1,2, are given by 

P:“‘@ + 6) = p:“‘(a) = Ya , 

pF’(a + 6) = p;‘(a) = y,‘, 

Pjsb + 6) 

= (- l)$ j8 d8, W(S,) s;-s~,-.&) 
0 

x kwl> Plk% + %I + ux) pf-% + u, k = 1, 2,... (21) 

If the series (19) are cut at the first-order terms, the zeroth-order approximation 
(15) is found again. If these series are cut at pi”’ and pi*’ respectively, then the first 
k orders of the perturbative corrections are included in (18). The kth order correct- 
ions are given by k-tuple integrals, whose evaluation becomes more and more 
difficult as k increases. Moreover, the addition of higher order terms is expected to 
result in a hardly manageable algorithm. 

Fortunately, due to the optimal choice (17) for U, the first order corrections lead 
to a particularly simple algorithm, Eqs. (33) below, which shows a rate of con- 
vergence O(h4) over the domain [r o, r,], the best among all the SF-PN algorithms 
reported until now. (Compare with the rate of convergence @(AZ) of the zeroth-order 
approximation of SF-PNM [6, 9, 19,211, and with the rate of convergence O(h3) of 
the SF-PN algorithm recently reported in [lo].) 

IV. EVALUATION OF THE FIRST-ORDER PERTURBATIVE CORRECTIONS 
THE PRACTICAL ALGORITHM 

The addition of the first-order perturbative corrections to the zeroth order 
approximation of SF-PNM gives, 

where, 

(2W 

Wb) 

(234 

Wb) 

(234 

(234 
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Here we have denoted, 

D(S) = Z@)/S - ii, 

The quantities Zr , Zz , and Z3 denote the following integrals, 

Z,(S) = -UP) I6 dS, 4a + f%)@ - 2-9 .$2@ - 2S,), 
0 

Z,(S) = -(l/2) J6 tis6, u’(a + S,)(S - 26,) &(S - 26,). 
0 

The function c,(S) is defined in terms of ,$I and E, as follows: 

50(S) = km - c%wm~)2. 

Using the Taylor series expansion for u(u + S), 

u(a + S) = f (l/m!) SW~)(u), 
??I=0 

we get after some algebra, 

D(S) = f (l/(m + 1) !)(P - h”) @)(a), 
rn=l 

Z2@) = C(S) 50(S) + w9, K(S) = P'(S), 

C(S) = f (l/m!) Sm+%(m)(u) = [u(u + 6) - u(u)] 62, 
WL=l 

P(S) = f t;‘(s), s = 0, 1, 
pa 

m 

(2% 

Pb) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

Q’(S) = c ((m + p)!/m!(m + 2p + I)!) U(m+2P+@(u) sm+2P+3~,(s), p = 1,2,... 
nZ=O 

L(s) = KG9 - (6’2) 52@M242, 

5,+2(S) = [2(2P + 5) 5,+1@> + 5,(w(242~ p = 0, 1, 2,... 

The functions 5, are all finite as 1 w  j -+ 0 (see the Appendix). 

(324 

Wb) 
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A considerable simplification of the expressions of y and y’, Eqs. (22), is obtained 
observing, first, that the terms tt8)(8) Eq. (31), give high-order contributions (see 
error analysis in the next section) and can be dropped out without affecting the 
order of convergence of the numerical method, and second, that at 6 = h, D(h) = 0. 
Then, the initial conditions for the Cauchy problem on the next interval are given 
simply by 

Y:“@) = t&(h) - w 5&N Y, + M,W Y,‘, (334 

Y;“‘m = 02h5,(4 Ya + E,(h) + w &ml Ya’. Wb) 

V. ERROR ANALYSIS 

In this section we shall consider the local truncation errors 

and 

T;“‘(h) = y’(b) - y;“‘(b) = z-“O’(h) - C(h) <,(h) Wb) 

and we shall show that both are Q(h5), therefore the order ofaccuracy [26, p. 311 of 
the present SF-PN method is four. In (34) 

and 
T(o)(S) = y(a + 8) - y(O)(a + 6), Wa) 

T’(O)(S) = y’(a + 6) - y(O)‘(a + S), (35b) 

are the local truncation errors associated to the zeroth-order approximation of the 
perturbative approach. 

The present error analysis is a straightforward extension of that performed in [9] 
for the zeroth-order approximation and consists of the following steps. 

(i) Leaving undetermined for the moment the quantity f = ii - e, Eq. (13a), 
and using Taylor series about the beginning of the interval [a, b] for the quantities 
involved in Eq. (35), the local truncation errors T(O)(6) and T’(O)(6) are evaluated as 
power series in 6. 

(ii) Minimizing the local truncation errors T(O)@) and T’(O)(6) with respect to 
$ at 6 = h (where initial conditions are produced for the Cauchy problem on the 
next interval), the expression (17a) is obtained for the step function approximation 
U. The quantities T(O)(h) and T’(O)(h) are obtained as power series in h as well [9]. 
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(iii) Expanding in Taylor series the product C(h) S,(h), the local truncation 
errors (34) are finally obtained: 

T:“(h) = - [t(l)(h) + h6(s,*/(2 X 6!) + 5f,f2h/(2 X 7!))] J’, 

t- [2t@)(h) - f,%7/(2 x 7!)] yn’ + O(P), (364 

T’;(‘)(h) = - [2@(O)(h) + A”{&“/5 ! + 5fifi h/6 ! + (9s,f, 

+ 25fm + 7f,f,*/2) w791 h + [ww 

+ Wh2/(2 x 69 + ?iXN(2 x 7!))1y,’ + WW. Wb) 

Here, fm = cPf(u)/d8", m = 0, 1, 2 ,..., while 

We) = -~5Kh+, +.L+, W/6! + Ui+s 

+fof*+sP) h2/7 !I + @4w> s=O,l (37) 

are just the first-order corrections (31) which were dropped out from the practical 
algorithm (33). Thus, the statement that the order of accuracy of the present 
SF-PNM is four was proved. 

We have to stress the essential role of the error analysis in ensuring a simple 
fourth order PN algorithm. A comparison with the PN algorithm recently reported 
by Riehl, Diestler, and Wagner (RDW) [lo] will best illustrate this point. 

(a) In our approach, the step function approximation U, Eq. (17), is yielded 
by the error analysis. In [lo], U is chosen intuitively. In our notation, this choice 
writes 

ii,,, = u(u + 11/2). (38) 

The perturbative correction w(6), Eq. (13b), chosen in [IO], can be rewritten in 
our notations 

WRD&) = (6 - h/2) u’(u + h/2) + (l/2)(6 - h/2)2 u”(u + h/2), (39) 

where primes indicate derivation with respect to 6. Expanding iiRDW and wRDW(S) 
in Taylor series about the beginning of the interval [a, b], we get for their sum, 

iiRDW + wRDW(S) = u(O)(u) + Su’l’(u) + (l/2) S2u’*‘(u) + (h/48)(12S2 

- 66h + h2) u’“‘(u) + .‘., z&+-)(u) = dw(u)/dS”, WV 

i.e., it coincides with the exact potential u(u + a), Eq. (27), in the first three terms 
only. In contradistinction to this, our first-order perturbative corrections J#), 
Eqs. (23), were evaluated taking for w(6) the exact expression (13b), with u(u + 6) 
given by the infinite Taylor expansion (27). It is this difference which makes the 
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PN algorithm of [lo] to be Q(h3) on [rO , r,] while our PN algorithm is 0(/z*) on 
[ro 3 ml. 

(b) The error analysis helped us to simplify considerably the PN algorithm 
(33), first, by including higher-order terms in the zeroth-order approximation 
through tl, and, second, by showing the uselessness of the corrections 
t(“)@), Eqs. (29), (31), which were dropped out without loss of accuracy. Thus, 
our algorithm (33) involves a single perturbative term, fC(h) c,(h), in contra- 
distinction to the PN algorithm of [lo] which contains several perturbative correc- 
tions (see the Appendix of that paper). 

(c) For the potentials under investigation in this paper (Section VIA), a 
very considerable decrease of the computing time was obtained provided the 
potential related quantities were computed only once at a given step size, and then 
stored (Section VIB). The present PN algorithm requires the storage of two quanti- 
ties, li, Eq. (17), and C(h), Eq. (30), while the PN algorithm of [lo] requires the 
storage of three quantities, u(a + h/2), Eq. (38), zl’(a + h/2), and u”(a + h/2), 
Eq. (39). 

We may therefore conclude that our PN algorithm is more efficient than that 
reported in [lo] as it concerns the rate of convergence, the computing time, and 
the storage area required on computer. 

VI. NUMERICAL RESULTS 

A. Reference Eigenvalues 

We have investigated numerically the eigenvalue problem (l)-(5) for the s states 
of two potentials: the optic potential considered by Bencze [2] and the Morse 
potential [27]. For both of them analytic expressions exist for the eigenvalues 
([2] and [28], respectively). 

The optic potential is a sum of Woods-Saxon and derivative Woods-Saxon 
terms, 

W-) = Ml + t> - Wad t/U + V, 
t = exp[(r - rJa,]. 

(41) 

Here, u0 , r,, , and a, are real or complex adjustable parameters. In the present work 
we have taken 

u, = -50 fm-2, r,, = 7 fm, a,, = 0.6 fm. (42) 

This potential has 14 bound states, given in Table I with 11 exact decimal figures. 
These reference eigenvalues have been computed from Bencze’s analytic result [2] 
(which gives the eigenvalues as zeros of the S matrix), in double precision, on an 
IBM 370/135 computer at the Institute of Atomic Physics, Bucharest, The execution 



12 ADAM, IXARU AND CORCIOVEI 

TABLE I 

Reference Eigenvalues for the Optic Potential (41)-(42) 
Computed from the Analytic Result of Rencm [2] 

Eigenvalues (fm-2) 

e, = -49.457 788 728 
e, = -48.148 430 420 
e, = -46.290 753 954 
e8 = -43.968 318 431 
e, = -41.232 607 772 
e5 = -38.122 785 096 
e6 = -34.672 313 205 
e, = -30.912 247 488 
e, = -26.873 448 915 
e, = -22.588 602 257 

elo = - 18.094 688 282 
e,, = -13.436 869 040 
e,2 = -8.676 081 670 4 
e13 = -3.908 232 480 8 

TABLE II 

Reference Eigenvalues for the Morse Potential 
(43), (45), Computed from Eq. (44) 

Eigenvalues (A-%) 

e, = -178.798 538 35 
e, = - 160.283 425 63 
e2 = -142.780 060 34 
e3 = -126.288 442 49 
e4 = - 110.808 572 07 
e, = -96.340 449 093 
e6 = -82.884 073 546 
e, = - 70.439 445 434 
es = -59.006 564 758 
e. = -48.585 431 516 

elo - ~ -39.176 045 710 
ell = -30.778 407 338 
cl2 - ~ -23.392 516 401 
e13 = - 17.018 372 900 
e14 = ~ 1 I .655 976 833 
e16 = -7.305 328 201 7 
e16 = -3.966 427 005 1 
e17 = -I .639 273 243 5 
e18 = -.323 866 916 99 
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of the program was repeated, in double precision too, on a CDC 3800 computer at 
the Computing Centre of the University of Geneva, and yielded the results which 
are given in Table I as well. 

The Morse potential [27-30, 221, 

u(r) = Dt(t - 2) t = exp[a(r, - r)], (43) 

has the eigenvalues (see, e.g., [28]) 

e, = --D[l - aD-1/2(k + @12, (44) 

which can be easily evaluated to any desired accuracy. Fixing the parameters D, a, 
and re , respectively to 

D = 188.4355 A-2, a = 0.711248 A-l, I, = 1.9975 A, (45) 

19 bound states are found, which are given in Table II with 11 exact decimal 
figures. 

B. Practical Considerations 

The eigenvalue problem (l)-(5) has been implemented on computer, in the 
manner described in Section II, in FORTRAN IV, both for the present SF-PNM 
and for the Numerov method. A special subroutine was created for the computa- 
tion and storage of the mean reduced potential i&, Eq. (17), and of the quantities 
Ci(h), Eq. (30), in the case of the SF-PNM or of the reduced potential ui = u(ri) in 
the case of the Numerov method. In this way, for the two potentials quoted above, 
a considerable decrease of the computing time was obtained, namely of a factor of 
about six for the SF-PN method and about five for the Numerov method. 

A very important point concerns the formula used in practice to compute the 
mean reference potential L An inspection of the results produced by the error 
analysis shows that if we really wish to get an O(h5) rate of convergence for the PN 
algorithm (33), we have to keep in the series (17a) at least the first four terms. 
Suitable integration formulae of the equivalent expression (17b) which satisfy to 
this requirement and use evaluations of u(r) only are the closed Newton-Cotes 
formulae [25, Section 1.51. The numerical results reported in this paper have been 
obtained using the Newton-Cotes formula 

u = [19{u(u) + u(b)) + 75{u(a + h/5) + u(b - h/5)} 

+ 5O{u(u + 2h/5) + u(b - 2h/5)}]/288, (46) 

which coincides with (17a) in the first six terms when developed in power series. 
The reduced energy ranges over which the eigenvalues were searched for were 

[emin , e ,,I = [-50 fm-2, -0.2 fm-2] (474 
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for the optic potential, and 

[emin , emax] = [ - 180 Ae2, -0.2 k2] 

for the Morse potential. 

W’b) 

The eigenvalues of the problem (l)-(5) are simple. Therefore, the reduced 
energy range [emin , emax], can always be divided in smaller intervals 

[emin , emax = C [$‘“, ei?] k (48) 

so that an eigenvalue only exists inside each interval [ep’” , ey]. The shooting 
procedure used to locate the eigenvalues inside the intervals can be either one- 
directional (outward) or two-directional with a matching point in the middle. For 
the solution of the Schrddinger equation, the two-directional shooting is usually 
recommended (see, e.g., Fox [24] and Cooley [29]). Yet, we used the one-directional 
outward shooting technique and for both potentials the present SF-PNM produced 
highly accurate results. 

The eigenvalues are produced by bisection: observing that for each interval 
[ey’” , e:“] entering Eq. (48) the following inequality holds, 

F(r, , eF’*) F(r, , ey) < 0, (49) 

the energy interval [eyn, e? ] is halved and (49) is used to choose the half- 
interval containing the eigenvalue, until the condition 

(50) 

is fulfilled. Here, 9 is the relative error which enters Eq. (6’). 
The quantities &, t2 , co, which enter the algorithm (33) are related, in fact to 

trigonometric or hyperbolic cosine and sine respectively. They make, however, the 
SF-PNM relatively slow. The method becomes sensibly faster, especially at small 
step sizes, provided power series are suitably used for these quantities at small 
values of the product wh. 

The eigenvalues of the potentials (41) and (43) respectively were obtained, in 
single precision, on an IBM 370/135 computer at the Institute of Atomic Physics, 
Bucharest, and on a CDC 3800 computer at the Computing Centre of the 
University of Geneva. On the IBM computer, the relative accuracy in the numerical 
results, Eqs. (6’) and (50), was required to be 

r) = 2-20 N 9.5 x IO-‘, (SW 

whereas on the CDC computer we have taken 

q = 2-35 ~2.92 x IO-ll. Wb) 
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In the following, the results obtained on the CDC computer will be reported, for 
the better precision (51b) allowed us to give a clear proof of the O(h4) rate of 
convergence of the PN algorithm (33). 

C. Numerical Results and Discussion 

In our computations, we intended, first, to give an experimental proof for the 
fourth order of accuracy of the SF-PNM which was predicted by the error analysis, 
and second, to make evident the remarkable constancy of the numerical results 
produced by the present PN procedure in the limit of the very small step sizes, 
which is in strong contrast with the behavior of the results produced by the 
Numerov method. With these aims in mind, we have adopted the easy way of 
considering equally spaced mesh points for both methods, 

ri = r,, + ih, i = 1, 2 )...) It. (52) 

In a first version of the numerical program, the asymptotic numerical region was 
characterized, for all the energy range [e min , emax], Eqs. (47), by a single cut off 

rn , Eq. (6’) determined from 

I +,)I < 7) I emax I . 

The length of the finite domain 

(53) 

kg = 0, r,l (54) 

was then obtained as a multiple of the step size h (Table III). The Eq. (53) seriously 
overestimates the numerical asymptotic region for the energies e well below ema , 
thus leading to useless supplementary computations. A more realistic approxima- 
tion of the numerical asymptotic region is ensured by the equations 

I 4-&W < 77 I eF I , k = 0, 1, 2 ,..., (55) 

where the energies eFZ are defined by Eq. (48). The implementation of the cri- 
terion (55) in the numerical program ensured an automatic adjustment of the 
asymptotic region to each eigenvalue label (Table IV) and resulted in a decrease 
of the computing time of 10-17 % for both SF-PN and Numerov methods. 

Eigenvalues ek(l, h; r) obtained on the CDC 3800 at various step sizes h by means 
of the present SF-PNM (I = 1) and of the Numerov method (I = 2) are collected 
in Tables V to VIII. Besides the eigenvalues the numerical program yielded also the 
absolute errors 

Ad, k $ = ek - ek(& h; 7) (56) 
and the relative errors 

Ektl, h; 7) = dk(t h; q)lek . (57) 
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TABLE III 

The Length r, of the Domain [0, r-1, Eq. (54), 
Computed According to the Criterion (53) 

at Various Step Sizes 

1 1 1 1 1 1 1 1 h” 1 
5 4 8 16 

- 
32 64 128 256 

r, for 
the optic 

potential 

25 49 97 194 388 175 1550 3099 6198 - 
-ilT 8 

- - __ 
16 32 64 128 256 

r, for 
47 92 184 367 733 1465 2928 5855 the Morse 11,709 -- 
-i-l 4 8 

- --- 
16 32 64 128 256 

potential 

a The step size h and the length r, are measured in fermis for the optic potential (41)-(42), and 
in Angstroms for the Morse potential (43), (45). 

TABLE IV 

Variation of the Length r,, of the Domain [0, t-J, Eq. (54), with the Eigenvalue Label when 
Computed according to the criterion (55) 

Eigen- 
value 
label 

0 1 2 3 4 5 6 7 8 

r, for 
the optic 
potential 

r, for 
the Morse 
potential 

5354 5357 5363 5374 5381 5393 5410 5429 5451 

9265 9303 9346 9389 9438 9487 9544 9601 9662 

9 10 11 12 13 14 15 16 17 18 

5417 5508 5558 5632 5783 - - - - 

9737 9811 9906 1ooo1 10110 10267 10430 10734 11130 11709 

~Values obtained at the step size h = l/256. Results are given in units h. 
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TABLE V 

Some of the Eigenvalues Produced by the Present SF-PNM, on the Computer CDC 3800, for the 
Optic Potential (41)-(42). Absolute Errors, Eq. (56), are Given in Parantheses as Yielded by 

the Computer 

h e. el 

I 

112 

114 

l/16 

l/32 

l/64 

l/128 

l/256 

l/512 

-49.457 824 948 
(36 222) 

-49.457 793 813 
(5 085) 

-49.457 789 108 

(381) 

-49.457 788 753 

(25) 

-49.457 788 729 

(3) 

-49.457 788 728 

(1) 

-49.457 788 728 

(1) 

-49.457 788 728 

(1) 

-49.457 788 728 

(1) 

-49.457 788 728 

(1) 

-48.140 665 367 
(-7 765 052) 

-48.147 904 495 
(-525 924) 

-48.148 397 092 
(-33 327) 

-48.148 428 330 
(-2 089) 

-48.148 430 289 
(- 129) 

-48.148 430 410 

C-8) 

-48.148 430 419 

(1) 

-48.148 430 419 

(1) 

-48.148 430 419 

(1) 

-48.148 430 419 

(1) 

-46.261 311 078 
(-29 442 876) 

-46.288 499 895 
(-2 254 059) 

-46.290 606 025 
(- 147 929) 

-46.290 744 599 
(-9 355) 

-46.290 753 369 
(- 586) 

-46.290 753 918 

(-36) 

-46.290 753 951 

(-3) 

-46.290 753 953 

C-1) 

-46.290 753 955 

(1) 

-46.290 753 955 

(1) 

h 

1 

112 

114 

l/8 

e6 

-34.387 609 285 
(-284 703 921) 

-34.647 552 607 
(-24 760 597) 

-34.670 336 790 
(- 1 976 414) 

-34.672 181 651 
(-- 131 554) 

e7 

-30.777 641 642 
(-134 605 846) 

-30.879 676 489 
(-32 570 998) 

-30.909 476 468 
(-2 771 019) 

-30.912 059 798 
(- 187 689) 

e8 

-26.916 460 263 
(43 011 348) 

-26.833 752 744 
(-39 696 171) 

-26.869 823 491 
(-3 625 424) 

-26.873 198 490 
(- 250 426) 
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TABLE V (continued) 

h e6 e7 e8 

l/16 -34.672 304 852 
(-8 353) 

l/32 -34.672 312 681 
(- 524) 

l/64 -34.672 313 172 

(-33) 

l/l28 -34.672 313 204 

C-1) 

l/256 -34.672 313 204 

C-1) 

l/512 -34.672 313 206 

(1) 

h ell 

-30.912 235 517 
( -11 970) 

-30.912 246 735 
(- 753) 

-30.912 247 440 

(-48) 

-30.912 247 484 

(-4) 

-30.912 247 486 

C-1) 

-30.912 247 489 

(2) 
-~ -___ 

e12 

-26.873 432 864 
(-16 052) 

-26.873 447 905 
(-1 010) 

-26.873 448 853 

(-63) 

-26.873 448 911 

(-4) 

-26.873 448 915 

(0) 

-26.873 448 917 

(1) 

e13 

1 

112 

l/4 

118 

l/16 

1132 

l/128 

l/256 

l/512 

- 12.797 804 055 
(-639 064 985) 

- 13.395 408 026 
(-41 461 014) 

-13.431 217 846 
(-5 651 194) 

-13.436 446 940 
(- 422 100) 

-13.436 841 439 
(-27 600) 

-13.436 867 294 
(-1 746) 

-13.436 868 930 
(-110) 

- 13.436 869 032 

C-8) 

-13.436 869 038 

c-3 

-13.436 869 039 

C-1) 

-8.406 952 076 1 
(-269 129 594 3) 

-8.619 235 031 8 
(-56 846 638 7) 

-8.670 346 557 6 
(-5 735 112 8) 

-8.675 636 700 8 
(- 444 969 6) 

-8.676 052 298 9 
(-29 371 6) 

-8.676 079 808 3 
(-1 862 2) 

-8.676 081 552 6 
(- 117 8) 

-8.676 081 662 1 

(-8 4) 

-8.676 081 668 1 

(-2 3) 

-8.676 081 670 4 

(0) 

-4.338 717 870 9 
(430 485 390 0) 

-3.898 413 425 8 
(-9 819 055 1) 

-3.902 972 226 3 
(-5 260 254 6) 

-3.907 802 612 3 
(- 429 868 6) 

-3.908 203 750 7 
(-28 730 1) 

-3.908 230 653 8 
(-1 827 0) 

-3.908 232 365 6 
(-115 3) 

-3.908 232 472 4 

(-8 5) 

-3.908 232 479 7 

C-12) 

-3.908 232 479 9 
(- 9) 
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TABLE VI 

Eigenvalues Produced for the Same Potential by the Numerov Method 

h e. el e4 

l/4 

l/8 

l/16 

l/32 

l/128 

l/256 

11512 

-49.451792 541 
(3 814) 

-48.148 516 677 
(86 258) 

-46.291 382 801 
(628 847) 

-49.457 788 967 

(239) 
-48.148 435 188 

(5 369) 
-46.290 792 966 

(39 012) 

-49.457 788 747 

(20) 
-48.148 430 759 

(340) 
-46.290 756 391 

(2 437) 

-49.457 788 739 

(12) 
-48.148 430 461 

(42) 

-46.290 754 118 

(165) 

-49.457 788 769 

(42) 

-48.148 430 461 

(42) 

-46.290 754 002 

(48) 

-49.451788 892 

(165) 

-48.148 430 568 

(150) 

-46.290 754 098 

(144) 

-49.457 789 414 

m-5) 
-48.148 431 135 

(716) 

-46.290 754 621 

Kw 

-49.457 791 609 
(2 882) 

-48.148 433 078 
(2 659) 

-46.290 756 166 
(2 212) 

h e7 e8 

l/4 -34.715 357 745 
(43 044 540) 

-30.995 496 921 
(83 249 434) 

-27.021 562 100 
(148 113 185) 

W -34.674 930 910 
(2 617 705) 

-30.917 277 758 
(5 030 271) 

-26.882 336 402 
(8 887 487) 

l/16 -34.612 475 677 
(162 472) 

-30.912 559 177 
(311 690) 

-26.873 998 627 
(549 712) 

l/32 -34.672 323 355 
(10 150) 

-30.912 266 937 
(19 450) 

-26.873 483 190 
(34 275) 
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TABLE VI (continued) 

h e6 e7 es 

W -34.672 313 899 -30.912 248 744 -26.873 451 095 

(694 (1 256) (2 180) 

l/l28 -34.672 313 420 -30.912 247 696 -26.873 449 241 

(215) w9) (326) 

l/256 -34.672 313 879 -30.912 247 989 -26.873 449 551 

(673) (502) (636) 

l/512 -34.672 315 937 -30.912 250 195 -26.873 451 421 
(2 732) (2 708) (2 506) 

h ell e12 63 

114 

l/16 

l/32 

l/64 

l/128 

l/256 

l/512 

- 14.012 672 983 
(575 803 943) 

-13.470 554 122 
(33 685 082) 

-13.438 939 919 
(2 070 879) 

- 13.436 997 948 
(128 908) 

-13.436 877 127 
(8 087) 

- 13.436 869 709 
(66% 

- 13.436 869 800 

(76’3 

-13.436 871 344 
(2 304) 

-9.492 509 507 1 
(816 427 836 7) 

-8.723 295 495 4 
(47 213 824 9) 

-8.678 977 610 1 
(2 895 939 6) 

-8.676 261 834 3 
(180 163 9) 

-8.676 092 962 3 
(11 291 8) 

-8.676 082 563 1 
(892 7) 

-8.676 082 419 7 
(749 2) 

-8.676 084 654 9 
(2 984 4) 

-5.002 697 955 4 -0.677 
(1.094 465 474 5) (spurious) 

-3.970 499 419 1 
(62 266 938 3) 

-3.912 041 879 7 
(3 809 398 9) 

-3.908 469 335 6 
(236 854 8) 

-3.908 247 313 9 
(14 833 1) 

-3.908 233 613 2 
(1 132 4) 

-3.908 233 294 7 
(813 9) 

-3.908 235 503 8 
(3 023 0) 



TABLE VII 

Some of the Eigenvalues Produced by the Present SF-PNM, on the Computer CDC 3800, for the 
Morse Potential (43), (45). Absolute Errors, Eq. (56), are Given in Parantheses as Yielded by the 

Computer 

h e. 
1 -170.670 815 53 

(-8.127 722 81) 

-178.109 506 50 
(-689 031 85) 

- 178.748 202 27 
(-50 336 09) 

-178.795 178 78 
(-3 359 56) 

- 178.798 324 90 
(- 213 45) 

- 178.798 524 96 
(-13 39) 

-178.798 537 51 

(- 83) 

-178.798 538 30 

(-4) 
-178.798 538 35 

(0) 

-178.798 538 36 

(1) 

112 

l/4 

118 

l/16 

l/32 

I/64 

l/128 

11256 

11320 

-152.816 310 06 
(-7.467 115 57) 

- 159.100 691 43 
(-1.182 734 20) 

-160.152 906 51 
(-130 519 11) 

- 160.274 014 89 
(-9 410 74) 

-160.282 815 84 
(- 609 79) 

-160.283 387 18 
(-38 45) 

- 160.283 423 22 
(-2 41) 

-160.283 425 48 

(- 15) 
-160.283 425 62 

C-1) 

-160.283 425 63 

(0) 

e2 

-131.171 864 06 
(-11.608 196 28) 

-141.669 308 54 
(-1.110 751 81) 

- 142.599 626 95 
(-180 433 39) 

- 142.765 950 55 
(-14 109 79) 

- 142.779 126 52 
(- 933 83) 

-142.780 001 14 
(-59 20) 

- 142.780 056 63 
(-3 71) 

- 142.780 060 11 

(- 23) 
- 142.780 060 33 

(-1) 

- 142.780 060 34 

(0) 

h e7 e9 e9 

1 

l/2 

l/4 

l/8 

l/16 

l/32 

l/64 

l/128 

l/256 

11320 

-72.080 957 568 
(1.651 512 133) 

-68.150 454 517 
(-2.288 990 917) 

-70.220 633 869 
(-218 811 566) 

-70.416 512 862 
(-22 932 572) 

-70.437 787 998 
(-1 657 436) 

-70.439 337 965 
(- 107 469) 

-70.439 438 656 
(-6 778) 

-70.439 445 011 
(- 423) 

-70.439 445 410 

(-24) 
-70.439 445 425 

(-9) 

-59.018 884 891 
(12 320 133) 

-56.854 593 577 
(-2.151 971 181) 

-58.792 524 833 
(-214 039 925) 

-58.983 954 312 
(-22 610 446) 

-59.004 907 986 
(- 1 656 772) 

-59.006 456 948 
(- 107 809) 

-59.006 557 950 
(-6 807) 

-59.006 564 332 
(- 426) 

-59.006 564 730 

(-27) 
-59.006 564 749 

C-9 

-48.907 424 317 
(321 992 802) 

-47.184 817 221 
(-1.400 614 295) 

-48.384 968 629 
(-200 462 887) 

-48.563 625 034 
(-21 806 482) 

-48.583 813 590 
(-1 617 925) 

-48.585 325 895 
(- 105 621) 

-48.585 424 842 
(-6 674) 

-48.585 431 098 
(- 417) 

-48.585 431 490 

C-26) 
-48.585 431 507 

(-9) 



TABLE VII (conrinued) 

112 

l/4 

l/16 

l/32 

11128 

l/256 

11320 

h 

-31.728 230 206 
(949 822 868) 

-30.698 952 713 
(-79 454 625) 

-30.651 969 946 
(- 126 437 392) 

-30.759 384 130 
(-19 023 207) 

-30.776 965 664 
(-1 441 674) 

-30.778 312 700 
(-94 638) 

-30.778 401 350 
(-5 988) 

-30.778 406 961 
(- 376) 

-30.778 407 315 

(-23) 
-30.778 407 329 

(F-8) 

-24.303 395 312 
(910 878 911) 

-23.603 254 889 
(210 738 488) 

-23.300 086 926 
(-92 429 476) 

-23.375 356 405 
(-17 159 997) 

-23.391 204 489 
(-1 311 913) 

-23.392 430 083 
(-86 318) 

-23.392 510 936 
(-5 465) 

-23.392 516 058 
(- 343) 

-23.392 516 380 

C-21) 
-23.392 516 392 

(-9) 

-18.776 196 156 
(1.757 823 256) 

-17.417 297 022 
(398 924 122) 

- 16.942 679 621 
(-75 693 279) 

-17.003 323 364 
(-15 049 536) 

-17.017 213 618 
(-1 159 282) 

- 17.018 296 475 
(-76 425) 

-17.018 368 059 
(-4 841) 

-17.018 372 596 

(- 304) 
- 17.018 372 880 

(-20) 
-17.018 372 894 

(-5) 

e18 e17 e18 

1 

112 

l/4 

US 

l/16 

l/32 

1164 

l/l28 

l/256 

l/320 

-4.510 719 020 9 
(544 292 015 7) 

-4.175 132 365 7 
(208 705 360 5) 

-3.911 096 833 8 
(-55 330 171 3) 

-3.958 768 976 5 
(-7 658 028 6) 

-3.965 827 843 2 
(-599 161 9) 

-3.966 387 344 5 
(-39 660 5) 

-3.966 424 490 1 
(-2 515 0) 

-3.966 426 847 0 
(- 1580) 

-3.966 426 995 1 
(-10 0) 

-3.966 427 001 5 

(-3 5) 

-2.022 165 515 9 
(382 892 272 4) 

-1.771 794 866 4 
(132 521 622 8) 

-1.600 316 312 3 
(-38 956 931 2) 

-1.634 307 529 5 
(-4 965 714 1) 

-1.638 883 567 8 
(- 389 675 7) 

-1.639 247 430 5 
(-25 813 1) 

-1.639 271 606 2 
(-1 637 3) 

-1.639 273 140 9 
(- 102 6) 

-1.639 273 236 8 
(-67 5) 

-1.639 273 241 0 

(-2 5) 

-0.494 954 823 11 
(171 087 906 11) 

-0.382 314 537 65 
(58 447 620 66) 

-0.305 824 068 10 
(-18 042 848 90) 

-0.321 650 899 41 
(-2 216 017 59) 

-0.323 692 596 63 
(- 174 320 36) 

-0.323 855 364 11 
(-11 552 88) 

-0.323 866 184 19 
(- 732 81) 

-0.323 866 870 99 
(-46 00) 

-0.323 866 914 10 
(-2 90) 

-0.323 866 915 99 
C-1 00) 
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TABLE VIII 

Eigenvalues Produced for the Same Potential by the Numerov Method 

h e. e2 

l/8 -178.800 305 91 
(1 765 61) 

l/16 -178.798 647 03 
(108 68) 

l/32 -178.798 545 14 
(6 79) 

1164 -178.798 538 80 

(45) 

l/128 -178.798 538 48 

(13) 

l/256 -178.798 538 77 
(42) 

l/320 -178.798 539 12 

(77) 

- 160.294 355 29 
(10 929 66) 

- 160.284 094 54 
(668 91) 

- 160.283 467 23 

(41 60> 

-160.283 428 26 

(2 63) 

- 160.283 425 97 

(34) 

-160.283 426 18 

(55) 

- 160.283 426 70 

(1 07) 

-142.814 490 43 
(34 430 09) 

-142.782 155 56 
(2 095 22) 

- 142.780 190 48 
(130 14) 

- 142.780 068 52 

(8 17) 

- 142.780 061 02 

(68) 

- 142.780 061 01 

(66) 

- 142.780 061 46 

(1 12) 

h e7 e8 

l/S -70.831 786 699 
(392 341 265) 

l/16 -70.462 453 157 
(23 007 723) 

l/32 -70.440 864 563 
(1 419 129) 

l/64 -70.439 533 907 
(88 474) 

l/128 -70.439 451 120 
(5 687) 

l/256 -70.439 446 494 
(low 

l/320 -70.439 446 326 

(892) 

-68.415 . . . 
(spurious) 

-59.034 573 641 
(28 008 883) 

- 59.008 290 210 
(1 725 453) 

-59.006 672 287 
(107 530) 

-59.006 571 650 
(6 893) 

-59.006 565 647 
(889) 

-59.006 566 040 
(1 282) 

(spurious) 

-48.617 774 851 
(32 348 335) 

-48.587 421 939 
(1 990 423) 

-48.585 555 492 
(123 976) 

-48.585 439 402 

(7 886) 

-48.585 432 653 
(1 136) 

-48.585 432 783 
(1 267) 
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TABLE VIII (continued) 

h ell e12 

l/16 -30.815 990 889 
(37 583 550) 

l/32 -30.780 714 902 
(2 307 564) 

1164 -30.778 551 013 
(143 676) 

l/128 -30.778 416 480 
(9 142) 

l/256 -30.778 408 403 
(1 065) 

l/320 -30.778 408 457 
(1 119) 

-23.430 448 876 
(37 932 475) 

-23.394 843 134 
(2 326 733) 

-23.392 661 245 
(144 843) 

-23.392 525 649 
(9 248) 

-23.392 517 660 
(1 259) 

-23.392 517 807 
(1 405) 

- 17.054 934 234 
(36 561 335) 

-17.020 613 494 
(2 240 594) 

-17.018 512 346 
(139 446) 

-17.018 381 743 
(8 843) 

-17.018 374 150 
(1 250) 

-17.018 374 184 
(1 284) 

h 

l/16 

et6 cl7 e1, 

-3.988 882 198 9 -1.654 335 958 8 -0.330 741 531 83 
(22 455 193 9) (15 062 715 2) (6 874 614 83) 

l/32 -3.967 799 567 0 - 1.640 192 832 8 -0.324 285 328 56 
(1 372 562 0) (919 589 2) (418 411 57) 

1164 -3.966 512 406 2 -1.639 330 467 0 -0.323 892 962 19 
(85 401 2) (57 223 4) (26 045 19) 

l/128 -3.966 432 450 8 - 1,639 276 969 5 -0.323 868 674 37 
(5 445 7) (3 726 0) (1 757 38) 

l/256 -3.966 427 917 9 - 1.639 274 108 2 -0.323 867 608 68 
(968 I) (864 7) (691 68) 

l/320 -3.966 428 151 4 - 1.639 274 391 2 -0.323 867 764 32 
(1 146 3) (I 147 6) (847 33) 
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approach. Let us remark that because of this feature of the PN approach, the six 
decimal accuracy of the IBM computer was exhausted before we could get a clear 
confirmation of the O(h4) law of convergence of the present SF-PN method. 

An interesting and yet unexplored region (in connection with the perturbative 
methods) is that of the very small step sizes, where the limitations imposed by the 
finite length mantissa of the computer become essential. As it is clearly seen from 
Tables VI and VIII, and from Figs. 2 and 4, the finite length mantissa of the com- 
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FIG. 1. Graphical representation of the eigenvalue spectrum yielded by the present SF-PNM 

for the optic potential (41)-(42). The moduli of the relative errors ck, Eq. (57), are plotted against 
the eigenvalue label k and the mesh points density l/h. Each solid line joins the results obtained 
at various step sizes for a same eigenvalue. The vertical segments give the computer induced 
uncertainities (60). In their region, the solid lines are continued by dashed lines. Otherwise, dashed 
lines join the results of equal accuracy specified on the diagram. 
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puter results in the instability of the Numerov method at very small step sizes. As 
long as the truncation error term T,(2, h) is dominant in Eq. (58), the absolute/ 
relative error decreases as the step size h decreases. At smaller step sizes, however, 
the round off error term R,(2, h; r]) becomes dominant. Its growth with the mesh 
density l/h produces the very illustrative “valley shape” shown by the Figs. 2 and 4. 
The use of a two-directional shooting procedure [24,29] leads to a decrease of the 
accumulated round off errors, but it does not supress it. 
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FIG. 2. The same graphical representation of the numerical results as in Fig. 1, showing the 
eigenvalue spectrum yielded by the Numerov method for the optic potential (41)-(42). 
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The picture offered by the present SF-PNM at very small step sizes is completely 
different from that of the Numerov method. Over all the investigated step sizes, 
for all eigenvalues, and on both computers, we have not observed any accumulation 
of the round off errors in the eigenvalues produced by the PN algorithm (33). From 
Tables V and VII and from Figs. 1 and 3, we see that the eigenvalues produced 
by the present SF-PNM converge uniformly towards the reference eigenvalues until 
the available figures on computer are exhausted, and then remain constant within an 
error 

j-(2qes(l, h; 7) + one unit on the 11th decimal place of ek(Z, h; 7)). (60) 
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FIG. 3. The same graphical representation of the numerical results as in Fig. 1, showing the 
eigenvalue spectrum yielded by the present SF-PNM for the Morse potential (43), (45). 
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This is an inherent, computer induced, uncertainity in the results which appears 
to be very important for the present SF-PNM (Figs. 1 and 3, where its magnitude, 
given by the length of the vertical lines, is seen to prevail over the absolute error (56) 
at very small step sizes), while of negligible importance for the Numerov method 
(Figs. 2 and 4). 

The fact that we have got the same behavior of the PN results for two different 
potentials, undoubtedly shows that a new feature of the SF-PNM was put in 
evidence. The theoretical investigation of this point will be performed in a forth- 
coming paper. 
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FIG. 4. The same graphical representation of the numerical results as in Fig. 1, showing the 
eigenvalue spectrum yielded by the Numerov method for the Morse potential (43), (45). 
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(2) Error (accuracy) versus eigenvalue label at constant step size, and 

(3) Mesh density versus eigenvalue label at constant accuracy. 

These functional dependences provide us with information about the uniformity 
of approximation of the eigenvalue spectrum by each method. In this respect, the 
trends of the two methods are comparable. Each yields the best results for the 
fundamental eigenstate. As the eigenvalue label increases, the mesh density 
needed to ensure the same accuracy increases. However, this increase is sensibly 
smaller for the SF-PNM than for the Numerov method. 

Let us consider now another important parameter, the computing time. As 
already mentioned at the beginning of Section VIC, we were not essentially 
interested in the optimization of the PN algorithm (33) with respect to the com- 
puting time by implementing variable step sizes like in references [6] and [IO]. 
Therefore, the present PN data for the computing time are to be considered as 
maximum values. At present, we are not in a position to estimate how efficient the 
PN algorithm (33) would become when implementing variable step sizes. 

On the CDC 3800 computer, the library subroutine TIMEZB yielded, within 
1 msec, the computing time required by each method to get the eigenvalue spectrum 
at a given step size h. Comparing data at the same step size for two completely 
different methods such as PN and Numerov, is, however, insignificant. The para- 
meter which is convenient for such a comparison is the computing time at constant 
accuracy. We have got it as follows. The total computing time at the step size h 
was divided between the eigenvalues ek proportionally to the lengths r,(k), Eq. (55), 
of the numerical domains of the equation for every eigenvalue. The knowledge of 
the times per eigenvalue allowed us to estimate the total computing time needed to 
obtain a given accuracy over all the eigenvalue spectrum (i.e., to get the eigenvalue 
spectrum along the lines of constant accuracy in Figs. l-4). Data are collected in 
Table IX. 

The reported data illustrate very well the importance of the use of power series 
for the computation of the quantities tl, t2 , <,, , mentioned in Section VIB in 
connection with the PN algorithm (33). While the Numerov method requires the 
same computing time per step, irrespective of the step size, the abovementioned 
use of power series clearly ensures a decrease of the computing time per step of the 
present SF-PNM when the step size decreases. This remarkable fact is responsible 
for the general trend shown by the ratio tNM/tSFmPNM of increasing with the 
accuracy. 

The dependence of the ratio t,M/tsF-pNM on the shape of the potential well, 
previously reported for the scattering problem by Riehl, Diestler, and Wagner [lo], 
is confirmed for the eigenvalue problem as well. For the optic potential, which is 
negative and flat at the origin, the Numerov method is a little faster up to accuracies 
E = 10-5. For E = 1O-6 and lo-‘, however, it is the present SF-PNM which is 
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TABLE IX 

Computing Times at Constant Accuracy for 
the Present SF-PNM and for the Numerov Method NM 

Time (set) 

The optic potential, 
Eqs. (41 H42) 

The Morse potential, 
W. (43), (45) 

Accuracy, s 
Eq. (57) &F-PNM INhi 

INM 

TSF-PNM kF-PNM tNM 

tNM 

ISF-PNM 

10-S 18.236 15.992 0.877 135.811 132.164 0.973 
10-h 32.327 29.580 0.915 289.467 229.129 0.792 
10-5 55.185 53.935 0.977 530.329 445.685 0.840 
10-S 105.092 107.532 1.023 963.975 896.147b 0.930 
10-1 184.144 184.966” 1.004 1656.043 D.P.” - 
10-a 312.294 D.P.” - 2643.776 D.P.” - 
10-S 506.391 D.P.” - 3303.167* D.P.” - 

Q The Numerov method was unable to yield e,% within this accuracy, see Fig. 2. 
b The Numerov method was unable to yield e18 within this accuracy, see Fig. 4. 
E The Numerov method requires double precision (D. P.) to yield this accuracy, see Figs. 2 and 4. 
d In the case of the Morse potential, the available storage area on our computer CDC 3800 was 

exhausted before reaching this accuracy for the eigenvalues el, and e18, see Fig. 3. 

somewhat faster even when imposing (52). For the Morse potential, which is 
rapidly varying at small r (u(0) = 1669.6, u(l) = 12.6, u(2) = -188.4, u(4) = 
-79.8, etc.), up to E = 1O-s, the Numerov method is faster than the present 
SF-PNM with the restriction (52). Nevertheless, the present SF-PNM is able to 
yield, in single precision, accuracies as high as (lo-‘), 1O-8, or 1O-Q, for which the 
Numerov method requires double precision. For this accuracy range, the Numerov 
method is about twice slower than the present SF-PNM. Of course, from the 
practical point of view, on the CDC computer, the single precision is quite enough 
even for the Numerov method. Thus, the use of one method or of the other (with 
constant step sizes (52)) is rather a matter of taste when a CDC computer is 
available. On an IBM computer, however, the situation changes seriously. Here, 
the Numerov method was not able to yield, in single precision, lines of constant 
accuracy better than E = 1O-4 for the optic potential, and E = 1O-2 for the Morse 
potential, whereas the present SF-PNM yielded lines of constant accuracy up to 
E = 1O-6. Thus, on IBM computers, the present SF-PNM should be preferred to 
the Numerov method. 

58x/22/1-3 
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We shall end with another feature which should be taken into account when 
comparing the two methods. The Numerov method is able to yield eigenfunctions 
at the mesh points only, whereas the SF-PNM is a global method [5], i.e., using the 
computed v(riWl) and y’(r,-J, it provides us with an analytic approximation of the 
wavefunction on the ith interval. This feature was very well stressed by Gordon 
[6. Ill. It should be not minimized when comparing the relative merits of the 
various approaches to the numerical solution of (1). 

APPENDIX: TAYLOR SERIES EXPANSIONS 

Al1 the quantities 5, , s = 1, 2, Eqs. (16), and 5, , p = 0, I,.,,, Eqs. (26) and (32), 
are finite as w  -+ 0. Indeed, in this case, power series expansions for these quantities 
give, 

s= 1,2, 
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